Developer Tools Overview
Learn about the five core tools provided by Rabetbase and how they work together to boost development efficiency by more than 10 times.
Five-Tool Suite Overview
Rabetbase provides developers with a complete toolchain:
| Tool | One-Line Positioning | Core Value |
|---|---|---|
| OpenAPI | Standard HTTP Interface | Cross-language calls, third-party system integration, no SDK dependency |
| CLI | Project Lifecycle Management | Create projects, generate configurations, sync menus, build and deploy |
| TypeScript SDK | Frontend Data Access | Type safety, unified error handling, efficient queries |
| Java SDK | Backend Data Access | Server-side complex business logic development |
| MCP Server | AI Business Intelligence Engine | Let AI understand your business data and generate accurate code |
Core Advantage: The five tools are deeply integrated, covering the complete scenario from interface calls to AI-assisted development.
OpenAPI: Standard HTTP Interface
# Call directly via HTTP without installing SDK
curl -X POST https://api.lovrabet.com/openapi/v1/data/filter \
-H "Authorization: Bearer YOUR_ACCESS_KEY" \
-H "Content-Type: application/json" \
-d '{"modelCode": "customers", "pageSize": 10}'
What does OpenAPI do for you?
- Cross-language calls, usable by Python, Go, PHP, etc.
- Third-party system integration without depending on specific SDKs
- RESTful style, standard HTTP protocol
- Complete authentication mechanism with AccessKey or Token modes
CLI: Project Lifecycle Management
# Install
npm install -g @lovrabet/cli
# Common commands
lovrabet auth # Login authentication
lovrabet create # Create project
lovrabet start # Start development server
lovrabet api pull # Pull dataset configuration, generate SDK code
lovrabet menu sync # Sync menu to workbench
lovrabet build # Build production version
What does CLI do for you?
- One-click project structure creation, no configuration from scratch
- Auto-generate SDK configuration, no manual type definitions
- Sync menus to workbench, no manual backend login required
- Built-in proxy in development server, no CORS issues to handle
TypeScript SDK: Frontend Data Access
import { lovrabetClient } from '@/api/client';
// List query (with filtering, pagination)
const result = await lovrabetClient.models.customers.filter({
where: { status: { $eq: 'active' } },
select: ['id', 'name', 'phone'],
orderBy: [{ createTime: 'desc' }],
pageSize: 20,
});
// Single record query
const customer = await lovrabetClient.models.customers.getOne(customerId);
// Create data
await lovrabetClient.models.customers.create({
name: 'Zhang San',
phone: '13800138000',
});
// Custom SQL (complex report scenarios)
const stats = await lovrabetClient.api.executeSql('sql-code-xxx', {
startDate: '2024-01-01',
endDate: '2024-12-31',
});
What does TypeScript SDK do for you?
- Type safety with IDE intelligent hints
- Unified error handling, no try-catch everywhere
- Auto-handle authentication, browser auto-uses Cookie
- Built-in pagination, filtering, sorting, no manual parameter concatenation
Java SDK: Backend Data Access
// Initialize client
LovrabetClient client = new LovrabetClient(accessKey, secretKey);
// List query
FilterResult<Customer> result = client.models("customers")
.filter(new FilterParams()
.where("status", "active")
.select("id", "name", "phone")
.orderBy("createTime", "desc")
.pageSize(20));
// Single record query
Customer customer = client.models("customers").getOne(customerId);
// Create data
client.models("customers").create(new Customer("Zhang San", "13800138000"));
What does Java SDK do for you?
- Server-side secure calls, keys not exposed to frontend
- Complex business logic handling like batch operations, transaction management
- Seamless integration with existing Java ecosystem
- Suitable for scheduled tasks, background services, etc.
MCP: AI's Business Intelligence Brain
Traditional AI can only "read documentation" and knows field names but doesn't understand business relationships.
MCP lets AI "understand business" - it knows table relationships, field business meanings, and data flow rules.
Configure MCP
Configure in Claude Desktop or Cursor:
{
"mcpServers": {
"lovrabet-dataset": {
"command": "npx",
"args": ["-y", "@lovrabet/dataset-mcp-server"],
"env": {
"LOVRABET_APP_CODE": "your-app-code"
}
}
}
}
What can MCP do?
After configuration, you can chat directly with AI:
You: List all datasets
AI: (Calls MCP) Your application has 8 datasets...
You: View customer table fields
AI: (Calls MCP) The customer table has the following fields: id, name, phone...
You: Help me write a customer list page
AI: (Understands data structure via MCP) OK, I'll generate the code...
Efficiency Comparison
| Scenario | Traditional AI Development | Using MCP |
|---|---|---|
| Data Exploration | 20-30 minutes (checking docs, testing APIs) | < 5 seconds |
| SQL Design | 30-60 minutes (iterative debugging) | < 2 minutes |
| Code Generation | 20-30 minutes (multiple corrections) | 5 minutes |
| Complete Page | 2-3 hours | 10-15 minutes |
Code Accuracy:
- Traditional AI: 60-70% (requires multiple iterations)
- Using MCP: 95%+ (basically works on first try)
Five-Tool Suite Collaborative Workflow
┌─────────────────────────────────────────────────────────────────┐
│ Before Development │
│ 1. lovrabet create → Create project │
│ 2. lovrabet api pull → Generate SDK configuration │
│ 3. Configure MCP → Let AI understand your data │
├─────────────────────────────────────────────────────────────────┤
│ During Development │
│ 4. AI + MCP → Explore data, generate code │
│ 5. SDK calls → Type-safe data operations │
│ 6. lovrabet start → Real-time preview and debugging │
├─────────────────────────────────────────────────────────────────┤
│ After Development │
│ 7. lovrabet build → Build production version │
│ 8. lovrabet menu sync → Sync menu to workbench │
└─────────────────────────────────────────────────────────────────┘
Real-world Case: User List Page
Requirement: Display user list including basic info + membership tags + last login time (requires joining 3 tables)
Traditional Way
- Check docs to find field names → guess wrong → check again
- Write SQL → JOIN method wrong → modify again
- Write code → field name typo → debug again
- Repeat 4-5 rounds → Takes 2-3 hours
Using MCP
You: I need a user list page showing user basic info, membership tags, and last login time
AI: (Analyzes via MCP)
- user_info table: basic info
- user_membership table: membership info
- user_login_log table: login records
Let me help you write a join query...
(Generates complete code with 100% accurate field names)
Time: 10 minutes
Next Steps
- Step-by-Step Guide - Complete process from scratch
- OpenAPI Interface Documentation - HTTP API call details
- CLI Command Reference - All command details
- TypeScript SDK Guide - Frontend data operations details
- Java SDK Guide - Backend data operations details
- MCP Configuration Guide - AI-assisted development configuration